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Abstract

Asymptotic stability of high-order finite-difference schemes for linear hyperbolic systems is investigated using the
Nyquist criterion of linear-system theory. This criterion leads to a sufficient stability condition which is evaluated
numerically. A fifth-order compact upwind-biased finite-difference scheme is developed which is asymptotically stable,
according to the Nyquist criterion, for linear 2 · 2 systems. Moreover, this scheme is optimised with respect to its
dispersion properties. The suitability of the scheme for discretisation of the compressible Navier–Stokes equations is
demonstrated by computing inviscid and viscous eigensolutions of compressible Couette flow.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Compact finite-difference schemes; Stability
1. Introduction

A major challenge for the application of high-order finite-difference schemes to hyperbolic partial differ-
ential equations is to find stable boundary closures while maintaining the global order of accuracy r implied
by the interior scheme. For this purpose, the boundary scheme must have a local order of at least r � 1 [11].
The Gustafsson–Kreiss–Sundström (GKS) stability theory provides the means for decoupling the analysis
of boundary scheme and interior scheme [6]. For long-time integration, however, the more restrictive
asymptotic stability is required [6]. Asymptotic stability of a scheme for the scalar case does not guarantee
this property for systems of evolution equations, e.g. for 2 · 2 systems [6,7].
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One approach to ensure asymptotic stability for systems is the summation-by-parts technique [7] which is
based on an energy estimate. However, the summation-by-parts condition requires the difference schemes
to obey certain symmetry conditions in combination with a specific boundary treatment.

In this paper, asymptotic stability for systems is addressed employing linear-system theory. We recognise
that 2 · 2 linear hyperbolic systems correspond to feedback-coupled systems of linear-system theory for
which a necessary and sufficient stability condition is the Nyquist criterion [8]. If the Nyquist criterion is
satisfied stability for 2 · 2 systems is a consequence of asymptotic stability of the scalar case. For evaluating
the Nyquist criterion, the frequency response of semi-discretisations to a harmonic excitation at the inflow
boundary is evaluated numerically. A compact upwind-biased finite-difference discretisation is considered,
such as suggested in [3,17]. The compactness of the scheme provides a high-order discretisation and high
resolution properties on a narrow stencil. The upwinding property implies intrinsic dissipation at high
wavenumbers which damps spurious oscillations due to nonlinear effects (e.g. aliasing), which is a desired
property e.g. for turbulent flow simulations.

An unavoidable property of finite-difference schemes is that propagating waves may create spurious
waves at the boundaries. Discontinuities of the discretisation scheme, i.e. changes of the scheme�s coeffi-
cients from one grid point to the next, in general lead to reflections which are determined by the dispersion
properties of the scheme [20]. Note that the GKS stability theory can also be interpreted in terms of these
spurious waves and wave reflections [18,19]. In order to minimise reflections, certain boundary treatments
have been proposed, see [9] for a review. Based on the interior discretisation given by the fifth-order up-
wind-biased scheme CUVB [2], in the present paper we construct boundary schemes which are asymptot-
ically stable for 2 · 2 linear hyperbolic systems and are optimised with respect to their dispersion properties
at the boundaries. To demonstrate that the desired stability properties transfer to the discretisation of the
full Navier–Stokes equations, we apply these schemes to the direct numerical simulation of a standing wave
and to inviscid and viscous linear-stability eigensolutions of compressible plane Couette flow.
2. Stability of the scalar problem

Initially, we consider asymptotic stability of the scalar initial-boundary-value problem for the linear
advection equation which is the necessary condition for stability for systems,
ou
ot

þ c
ou
ox

¼ 0; 0 6 x 6 1; t P 0; c > 0; ð1aÞ

uðx; 0Þ ¼ f ðxÞ; 0 6 x 6 1; ð1bÞ

uð0; tÞ ¼ u0ðtÞ; t P 0: ð1cÞ

Following the method of lines [12,21], a spatial finite-difference discretisation results in the ordinary-differ-
ential-equation system for the vector of semi-discrete solutions ujðtÞ � uðxj, tÞ along a set of N lines x = xj,
j ¼ 1, . . . , N,
ML
du

dt
þ cMRu ¼ cbu0ðtÞ; ð2Þ
where u ¼ fujgNj¼1 and the matrices ML, MR and vector b are sparse (see Appendix A, Eq. (A.2)). Since we
are interested in the stability properties of the spatial discretisation we consider here the semi-discrete prob-
lem only. For time integration any stable scheme can be used.

With the ansatz u = ueve
kt and the homogeneous boundary condition u0ðtÞ = 0 one obtains the general-

ised eigenvalue problem
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� k
c
MLuev ¼ MRuev: ð3Þ
For asymptotic stability of scheme (2Þ for the solution of (1) with homogeneous boundary condition the
real parts of all eigenvalues k of Eq. (3Þ must satisfy ReðkÞ 6 0, where for ReðkÞ = 0 the multiplicity of k is
at most one. To ensure stability also for the inhomogeneous case, eigenvalues with zero real part need to be
excluded. Another requirement is Lax stability which for a semi-discretisation is equivalent to the solution
being bounded in the limit Dx ! 0 at a fixed time t [6]. In [6] Lax stability for finite-difference approxima-
tions was shown by GKS stability analysis. Since Lax stability is not the main focus in this paper, we follow
for this purpose a more pragmatic approach and test a necessary condition (bounded real parts of the eigen-
values) along with a convergence study of the solution for spatial refinement at a fixed time.
3. Transfer function

The stability criterion for systems considered here is based on the transfer function of the scalar initial-
boundary-value problem. The solution of this problem is a linear combination of the homogeneous solution
and a particular solution. The homogeneous solution of Eq. (2Þ can be expressed as a linear combination of
eigensolutions of Eq. (3Þ. A particular solution can be obtained by a Laplace transform in t of Eq. (2Þ
assuming vanishing initial conditions. This leads to a system of linear equations for gðsÞ,
gðsÞ ¼ ðsML þ cMRÞ�1cb; ð4Þ

where
gðsÞ ¼ LfuðtÞg=Lfu0ðtÞg and s ¼ dþ iX; d;X 2 R: ð5Þ

gðsÞ is the transfer function in Laplace space of an inhomogeneity Lfu0ðtÞg which generates a grid function
LfuðtÞg as response. In the case of a purely imaginary s = iX, g(iXÞ represents the frequency response. It
can be expressed at each grid point xj as
gjðiXÞ ¼ jgjðiXÞjeiujðXÞ ð6Þ
with the amplitude response jgjðiXÞj and the phase response ujðXÞ. Note that for s = k the matrix
ðsML + cMRÞ becomes singular which corresponds to poles of the transfer function gðsÞ.

The stability criterion for systems considered here is governed by the transfer function of the outflow
grid point gNðsÞ only. For evaluating finite-difference discretisations we also consider amplitude responses
for the grid function on the entire domain which at each grid point represent the magnitude of temporal
oscillations. These oscillations originate from the inflow boundary and spread downstream. An ideal ampli-
tude response should be unity for all grid points and frequencies. The phase shift which can be quantified by
the phase response is not taken into account here.

Fig. 1 shows amplitude responses of grid functions for different finite-difference schemes in terms of fre-
quencies along grid points j. Considered discretisations are the first-order upwind scheme (Fig. 1(a)), the
second-order central scheme with first-order upwind discretisation at the outflow boundary (Fig. 1(b)),
the compact sixth-order central scheme with a fourth-order three-point stencil at the points adjacent to
the boundary and a third-order stencil at the boundary points [14] (Fig. 1(c)) and the sixth-order summa-
tion-by-parts scheme of Strand [16,7] (Fig. 1(d)), herein referred to as UPW1, CEN2, PAD6 and SBP6,
respectively. Furthermore, the fifth-order compact upwind-biased scheme CUVB [3,2] (Fig. 1(e), for the dis-
cretisation matrices see Appendix B, Eq. (B.1)) is investigated. The inflow boundary condition is enforced
strongly on the inflow grid point except for the summation-by-parts scheme where the simultaneous
approximation term (SAT) [7] is used, which is a penalty formulation. The amplitude responses exhibit



Fig. 1. Amplitude response versus frequency XDx/c along grid points j of schemes (a) first-order upwind (UPW1), (b) second-order
central (CEN2), (c) sixth-order compact central (PAD6) [14], (d) sixth-order summation-by-parts of B. Strand with SAT (SBP6) [16,7]
and (e) fifth-order compact upwind-biased (CUVB) [3], illustrated for XDx/c in steps of p/500.
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the typical behaviour of coupled oscillator systems. For the central schemes one observes unit amplification
for X = 0, large amplification peaks close to resonance and a decay to zero for X! 1 (Figs. 1(b)–(d)). In
contrast, the schemes with damping do not show resonance behaviour (Figs. 1(a) and (e)). Except for the
SAT boundary condition, the amplitude response at the inflow grid point j = 0 is unity. Note that the
amplitude response results shown in Fig. 1 are computed for discrete frequencies, which leads to a smeared
appearance of the peaks. The desired behaviour of an overall amplitude response of unity is reached
approximately at low frequencies where the high-order schemes (PAD6, SBP6 and CUVB) perform better
than the low-order discretisations (UPW1, CEN2).

We now focus on the upwind-biased scheme since it has no resonance behaviour. For the interpretation
of amplification and resonance in terms of dispersion properties see Section 5.
4. Stability of the system

In general, asymptotic stability for systems can be investigated establishing the eigenvalue problem of the
semi-discretisation for the entire system in an analogous fashion to the scalar problem (Eq. (1)–(3)). We
apply the Nyquist criterion by which stability for systems can be inferred from investigating the scalar
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problem. This is of special interest for the split of the one-dimensional discretisation into several domains,
i.e. for a partitioning of the computational domain into subdomains with boundary schemes where on the
boundary grid point the outflow boundary value of one domain is imposed as inflow boundary condition to
the neighboring domain. As mentioned before, stability of the entire system can be ensured by investigating
scalar problems on the individual domains. As model problem, we consider the linear hyperbolic 2 · 2
system
ou
ot

þ c
ou
ox

¼ 0;
ov
ot

� c
ov
ox

¼ 0; 0 6 x 6 1; t P 0; c > 0; ð7aÞ

uðx; 0Þ ¼ fuðxÞ; vðx; 0Þ ¼ fvðxÞ; 0 6 x 6 1; ð7bÞ

uð0; tÞ ¼ vð0; tÞ; vð1; tÞ ¼ uð1; tÞ; t P 0: ð7cÞ

The corresponding semi-discretisation is
ML
du

dt
þ cMRu ¼ cbv0; ð8aÞ

M�
L

dv

dt
� cM�

Rv ¼ cb�uN ; ð8bÞ
where for positive advection velocityML,MR and b are the same as inEq. (2Þ.M�
L,M

�
R and b

* are obtained from
ML, MR and b by multiplication with the reverse unit matrix (see Appendix A) and v ¼ fvjgN�1

j¼0 . We assume
that the corresponding inhomogeneous scalar initial-boundary-value problem, Eq. (2Þ, is stable. Assuming
vanishing initial conditions fu for Eq. ð8aÞ, the solution uNðsÞ at the grid point x = xN can be written as
uN ðsÞ ¼ hðsÞ � uNðsÞð�gv0ðsÞÞ
� �

guN ðsÞ; ð9Þ
where guNðsÞ and gv0ðsÞ are the transfer functions of the scalar components between inflow grid point and
outflow grid point and hðsÞ is the homogeneous solution of Eq. ð8bÞ at the outflow grid point ðx = x0Þ. Cor-
respondingly, non-vanishing initial conditions of Eq. ð8aÞ are considered by assuming vanishing ones of Eq.
ð8bÞ. The general case is obtained by superposition. The product guNðsÞð�gv0ðsÞÞ is termed open-loop trans-
fer function. Defining the overall transfer function
goðsÞ ¼
guN ðsÞ

1þ guN ðsÞð�gv0ðsÞÞ
; ð10Þ
Eq. ð9Þ can be expressed as
uN ðsÞ ¼ goðsÞhðsÞ: ð11Þ

A block-diagram representation of the linear feedback system is shown in Fig. 2. Linear-system theory

states that the system is stable if and only if the overall transfer function go has poles in the left half-plane
only [8]. Due to the temporally decaying homogeneous solution of Eq. (2Þ required for stability, a
Fig. 2. Feedback system.
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temporally decaying excitation hðsÞ is considered here only. Therefore, go may have poles also on the imag-
inary axis. For stability analysis of the system (i.e., for testing whether the open-loop transfer function be-
comes unity in the right half-plane) the Nyquist criterion [8] is used.

For open-loop transfer functions with no poles in the right half-plane, the Nyquist criterion states that
a feedback system is stable if and only if its open-loop transfer locus does not pass through and does not
encircle the point �1 + i0. The open-loop transfer locus is the response of the system along a contour on
the imaginary axis from �i1 to +i1 and back on a half-circle with infinite radius in the right half-plane
(Fig. 3, for the transfer locus see e.g. Fig. 4). In the present case of a decaying homogeneous solution,
the open-loop transfer function can be allowed to become unity on the imaginary axis so that passes
through the point �1 + i0 do not lead to instability. Therefore, a sufficient criterion for stability is given
by
jguN ðsÞgv0ðsÞj 6 1 for s ¼ iX and jsj ! 1 with d > 0; ð12Þ
which is satisfied for jguN ðsÞj 6 1 and jgv0ðsÞj 6 1, written in compact notation corresponding to Eq. ð4Þ

jgNðsÞj 6 1 for s ¼ iX and jsj ! 1 with d > 0: ð13Þ
For jsj ! 1 the transfer function gNðsÞ vanishes on the right half-plane (refer to Eq. ð4Þ). It remains to
check whether the amplitude response gNðiXÞ, which is symmetric with respect to the origin, is less than
or equal to one.

The criterion Eq. ð13Þ is sufficient not only for the single-domain problem considered here but also for
multiple domains. In the latter case, the transfer functions guN ðsÞ and gv0ðsÞ are replaced by the product of
the single-domain transfer functions, guN ðsÞ ¼ guN1

ðsÞ � � � guNnðsÞ; gv0ðsÞ ¼ gv01ðsÞ � � � gv0nðsÞ. If the scalar ini-
tial-boundary-value problems (Eq. (2Þ) of all domains are asymptotically stable and in addition satisfy
Eq. ð13Þ, stability of the multiple-domain composition is guaranteed.
Fig. 3. Contour which encloses the right complex half-plane.



Fig. 4. Nyquist diagram [8] of first-order upwind scheme (UPW1), 2 · 2 system, N = 50: —, ImðsÞP 0; - - -, ImðsÞ < 0.
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5. Dispersion properties

Besides stability, dispersion properties of a finite-difference scheme are important. They will also be used
for optimisation purposes in the following section. The temporal ansatz unðtÞ ¼ ûnðXÞeiXt applied to the
interior scheme of the discretised linear advection Eq. (2Þ
o

ot

Xlr
l¼�ll

~mL n;nþlunþlðtÞ þ
c
Dx

Xmr
m¼�ml

~mR n;nþmunþmðtÞ ¼ 0 ð14Þ
gives
iX
Xlr
l¼�ll

~mL n;nþlûnþlðXÞ þ
c
Dx

Xmr
m¼�ml

~mR n;nþmûnþmðXÞ ¼ 0 ð15Þ
(~mL n;nþl; ~mR n;nþm are the interior coefficients of ~ML; ~MR, see Appendix A). Assuming spatial wave-like
fundamental solutions
ûnþ1ðXÞ ¼ ûnðXÞj ð16Þ
with j = e�inDx (where n is the wavenumber and j is the space shift operator), one obtains the polynomial
iX
Xlr
l¼�ll

~mL n;nþlj
l þ c

Dx

Xmr
m¼�ml

~mR n;nþmj
m ¼ 0: ð17Þ
Eq. ð17Þ is the dispersion relation of the interior scheme constituting a relation between wavenumber n and
frequency X. Without dissipation the propagation velocity of wave packages is given by the group velocity
[21]
ug ¼
oX
on

: ð18Þ
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This does not necessarily hold for wave propagation with dissipation [4]. Stability of the discretisation im-
plies propagation directions toward non-increasing amplitudes. For the CEN2 scheme the space shift oper-
ators are
Fig. 5.
CUVB
j1;2 ¼ �i
XDx
c

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� XDx

c

� �2
s

ð19Þ
with real wavenumbers n1,2 if the frequency magnitude jXj is less than or equal to the cutoff frequency,
jXj 6 c/Dx, where oX/on1 and oX/on2 correspond to positive and negative group velocities respectively,
see [21]. When the frequency exceeds the cutoff frequency, the wavenumbers become complex correspond-
ing to exponentially decaying fundamental solutions in space (Fig. 5(a)). For the sixth-order central
scheme, as applied in the PAD6 discretisation, there are additional roots with complex wavenumbers
(Fig. 5(b)) corresponding to spatially decaying solutions. In contrast to central finite-difference schemes,
for which two wavenumbers are real at frequencies below the cutoff frequency, wavenumbers of dissipative
schemes become complex in general (for CUVB see Fig. 5(c)). For the first-order upwind scheme there is
only one forward-travelling fundamental solution (not displayed). Fig. 6 shows the dispersion properties
of CUVB with respect to real wavenumbers, as pertinent to spatial periodicity, resulting in complex fre-
(a)

(b)

(c)

Dispersion properties of (a) second-order central scheme (CEN2) [21], (b) sixth-order central scheme (PAD6) and (c) scheme
(X real, n complex): —, regular solution; -Æ-, - - -, � � �, spurious solutions.



Fig. 6. Dispersion properties of scheme CUVB (n real, x complex) [3].
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quencies denoted by x. In addition to the interior scheme (ZS), the discretisations at the boundaries are
evaluated (LB1, LB2, RB2, RB1 represent n = 1, 2, N � 1 and N in Eq. ð17Þ, respectively).

At the inflow and outflow boundary propagating waves are reflected. Reflections occur in general at dis-
continuities of the discretisation where the coefficients of the scheme change from one grid point to the next.
For a quantification of the reflection at the downstream boundary of the CEN2 discretisation see e.g. [20].
Considering the frequency response as a linear combination of the fundamental solutions, Eq. ð16Þ, of
the interior scheme, components ri ði = 1, . . . , n, n = number of fundamental solutions) of the frequency
response can be determined according to
rk;1ðiXÞ
rk;2ðiXÞ

..

.

rk;nðiXÞ

2
66664

3
77775 ¼

j0
1 j0

2 . . . j0
n

j1
1 j1

2 . . . j1
n

..

. ..
. ..

.

jn�1
1 jn�1

2 . . . jn�1
n

2
66664

3
77775

�1 gkðiXÞ
gkþ1ðiXÞ

..

.

gkþn�1ðiXÞ

2
66664

3
77775 with 0 6 k 6 N � nþ 1: ð20Þ
Fig. 7. Magnitude of frequency response decomposed into fundamental solutions r1, . . . , r4 for scheme CUVB.
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Fig. 7 shows the amplitude of the linear components for CUVB where the boundary grid points with dis-
cretisation different from the interior one are excluded for clarity. For this dissipative scheme spurious fun-
damental solutions due to reflections do not spread across the computational domain.

If we consider the frequency response gðiXÞ as a result of superimposed forward and backward travelling
waves these waves are consecutively reflected at the boundaries. As mentioned before, significant reso-
nances occur for the central schemes CEN2, PAD6 and SBP6 (Fig. 1).
6. Optimisation procedure

New boundary schemes for the fifth-order compact upwind-biased wavenumber-optimised finite-differ-
ence scheme CUVB [2] are now constructed, while the interior scheme is retained. These schemes satisfy the
requirement of stability for systems and they are optimised with respect to wave propagation through the
boundaries. The original stencil widths and orders of the boundary schemes are maintained, i.e. fifth-order
at the points adjacent to the boundary points and fourth-order at the boundary points (for completeness
the CUVB coefficients are listed in Appendix B, Eq. (B.1)). A scheme of order r satisfies the order condi-
tions [3]
j
Xlr
l¼�ll

lj�1 ~mL n;nþl ¼
Xmr
m¼�ml

mj ~mR n;nþm for j ¼ 0; . . . ; r þ 1: ð21Þ
For an approximation of given order there are two free parameters for each boundary scheme. The con-
straint on these free parameters that all real parts of eigenvalues of Eq. (3Þ are less than zero,
ReðkÞ < 0; ð22Þ
provides asymptotic stability for the scalar initial-boundary-value problem. Together with the criterion Eq.
ð13Þ, which in integral formulation gives the constraint
Z 1

0

maxðjgN ðiXÞj � 1; 0ÞdX ¼ 0; ð23Þ
the scheme is stable for systems.
Considering the fact that for the upwind-biased scheme spurious fundamental solutions of Eq. ð17Þ expe-

rience larger spatial dissipation than the regular one, it is assumed that spurious waves generated due to
reflections at one boundary do not influence the other boundary significantly. The amplitude response at
the outflow decreases for an increasing number of grid points due to spatial dissipation of the regular fun-
damental solution. This implies that for upwind-biased dissipative schemes a minimum number of grid
points is required to ensure stability for systems, so that a sufficient amount of dissipation compensates
amplifications at the boundaries.

The free parameters are determined by an optimisation with respect to the dispersion properties under
the constraints Eqs. (22) and (23) which ensure the desired stability properties. The target of optimisation is
to keep the reflections at the boundaries, which generate spurious waves, at a low level and to allow for an
undisturbed transmission of waves. A particular point is to obtain amplitude responses close to unity in the
low frequency range so that boundary conditions imposed are represented accurately. Reflections and
transmission of waves are not quantified as outlined in [19,20]. Rather, we employ the fact that for optimal
wave propagation the dispersion relations of the interior scheme and boundary schemes should match. For
this purpose, the cost function of the optimisation is chosen similarly as for the optimisation procedure in
[3],



Fig. 8.
(a) CU
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ft ¼
Z 1:9

0

ReðxðnÞLB1 � xðnÞZSÞ
2 þReðxðnÞLB2 � xðnÞZSÞ

2 þReðxðnÞRB2 � xðnÞZSÞ
2

þReðxðnÞRB1 � xðnÞZSÞ
2 dn; ð24Þ
considering real wavenumbers only. For wavenumbers larger than the upper bound of integration, dissipa-
tion is assumed to be dominant. Furthermore, the requirement of an amplitude response to be close to unity
can be enforced approximately for the present problem by the additional constraint
Z 1

0

maxðjg1ðiXÞj � 1; 0ÞdX ¼ 0: ð25Þ
This constraint prevents amplifications adjacent to the inflow.
The optimisation is done with a sequential quadratic programming method (SQP) [13] similarly as in [3]

using MATLAB [1] for N = 50 grid points. The integrals Eqs. (23) and (25) are evaluated numerically for
0 6 X 6 pc/Dx using Simpson�s rule with 251 grid points. For the integration of Eq. ð24Þ 50 integration
points are used. With suitable initial guesses and numerical tolerances of the optimisation, the scheme
CUVB-O1 was found, whose coefficients are listed in Appendix B. Note that the optimisation delivers local
extrema only and not necessarily a global optimum.

Linear stability is guaranteed by this procedure but does not necessarily hold for the nonlinear case.
It does hold for small perturbations from linearity but the stability for eigenvalues on the imaginary
axis, representing non-decaying solutions, can be destroyed [12]. Systems considered here (the linear
one Eq. (7), for the nonlinear case see next section) do have such eigenvalues if the physical non-decay-
ing solutions are properly represented. In order to obtain stability for nonlinear problems (see next
section) it appears reasonable to impose an additional constraint of a maximum amplitude response
adjacent to the inflow maxXðg1ðiXÞÞ = 1.26 as an alternative to Eq. ð25Þ, where the value 1.26 has
been chosen empirically. As result, the scheme CUVB-O2 is obtained (coefficients are given in Appendix
B).

The amplitude response of the scheme CUVB-O1 is close to unity at low frequencies and does not exceed
this value significantly (Fig. 8). For the scheme CUVB-O2, the amplitude response is larger than unity for
intermediate frequencies where the overshoot decays from inflow to outflow (Fig. 8). At the inflow, the
overshoot is larger and at a larger frequency than for scheme CUVB (Fig. 1(e)) but decays faster towards
the outflow. Fig. 9 shows the dispersion properties of CUVB-O1 and CUVB-O2 evaluated for real wave-
numbers. At the lower wavenumber range the properties of the boundary scheme match those of the
interior scheme. The split of the amplitude responses into their fundamental solutions according to Eq.
ð20Þ shows that for CUVB-O1 the regular waves are not amplified at the inflow (Fig. 10) whereas for
Amplitude response versus frequency XDx/c along grid points j of fifth-order compact upwind-biased optimised schemes:
VB-O1 and (b) CUVB-O2.



(a)

(b)

Fig. 9. Dispersion properties of scheme: (a) CUVB-O1 and (b) CUVB-O2.

Fig. 10. Magnitude of frequency response decomposed into fundamental solutions r1, . . . , r4 for scheme CUVB-O1.
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CUVB-O2 (Fig. 11) they are amplified. As is the case for scheme CUVB, spurious solutions generated on
the boundaries are not significant due to their strong dissipation.

Asymptotic stability of the finite-difference schemes CUVB-O1 and CUVB-O2 for the scalar case and for
systems is ensured for N = 50 grid points. As mentioned before, for this resolution the constraints for



Fig. 11. Magnitude of frequency response decomposed into fundamental solutions r1,. . .,r4 for scheme CUVB-O2.
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stability (Eqs. (22) and (23)) were applied within the optimisation. An investigation of the eigenvalues of the
scalar initial-value problem Eq. (3Þ for different resolutions for schemes CUVB-O1 and CUVB-O2 (and
also CUVB) does not exhibit eigenvalues with real parts larger than or equal to zero for resolutions between
N = 10 to N = 300. This is a strong indication for asymptotic stability in the scalar case. The additional
stability condition for systems, Eq. ð23Þ, is satisfied for resolutions from N = 10 to N = 300 for CUVB-
O1 and from N = 50 to N = 300 for CUVB-O2, respectively. The original discretisation CUVB [2] shows
this stability property for systems for resolutions from N = 200 to N = 300. Moreover, it confirms the
asymptotic stability for systems provided the number of grid points exceeds a certain threshold.

A necessary condition for Lax stability is boundedness of the real parts of eigenvalues which is guaran-
teed by asymptotic stability [6]. Furthermore, a grid convergence study for the scalar problem and for
the 2 · 2 system has been performed [7], see Table 1. For time integration an eighth-order Runge–
Kutta–Fehlberg method [12] with time stepping CFL = 0.1 is used so that the temporal truncation error
is negligible compared to the spatial error. Time-dependent inflow boundary conditions require a special
treatment, for Runge–Kutta schemes, to maintain the full temporal order of accuracy [5]. Here, this is
achieved by imposing the inflow boundary condition of the scalar problem at the end of each full
Table 1
Grid convergence at t = 20 using initial values uðx, 0Þ = sinð2pxÞ, vðx, 0Þ = �sinð2pxÞ
Grid CUVB-O1 CUVB-O2

Scalar case (Eq. (1)) 2 · 2 system (Eq. (7)) Scalar case (Eq. (1)) 2 · 2 system (Eq. (7))

log L2 Rate log L2 Rate log L2 Rate log L2 Rate

51 �6.8295 �5.8834 �6.5754 �4.8806
101 �8.3451 5.03 �7.4364 5.16 �8.1102 5.10 �6.4031 5.06
151 �9.2282 5.02 �8.3332 5.09 �9.0011 5.06 �7.2897 5.04
201 �9.8537 5.01 �8.9585 5.01 �9.6314 5.04 �7.9189 5.04
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Runge–Kutta time-step only [5]. The implied reduced CFL number for stability is acceptable for this testing
purpose. With this space–time discretisation the L2 error has been computed at the time t = 20. The con-
vergence to the solution, for Dx ! 0 at a fixed time, implies that the schemes are Lax stable.
7. Applications

The schemes are applied for flow simulations based on the Euler and Navier–Stokes equations. For a
one-dimensional configuration, a standing wave between two walls is simulated. The linearisation of the
1D Euler equations for small disturbances between two walls corresponds to the 2 · 2 system of Eq. (7),
where sound waves propagate with the speed of sound. Due to zero velocity of the base flow there is no
propagating entropy wave. The upwind discretisation is applied to the conservative formulation of the Eu-
ler equations
Table
L2 err

maxðL
0<t6T

T

10
50
100
1000
oU
ot

þr � F ðUÞ ¼ 0; ð26Þ
where the spatial derivatives of fluxes are discretised with the positive and negative upwind-biased scheme
(for notation see Appendix A)
Di ¼
1

Dx
ð ~M�1

L
~MR � FðUÞÞi; D�

i ¼
1

Dx
ð ~M��1

L
~M

�
R � FðUÞÞi; ð27Þ
respectively. Considering the diagonalisation of the flux Jacobian K = SðoF/oUÞS�1, the resulting deriva-
tives of fluxes are determined according to
~Di ¼ Sið½1þ sgnðKiÞ�S�1
i Di=2þ ½1� sgnðKiÞ�S�1

i D�
i =2Þ ð28Þ
(see [3]). Boundary conditions are imposed by setting the velocity normal to the wall to zero. The temporal
discretisation is the same as in the linearised case, with a sufficiently small CFL number.

An alternative to the discretisation with boundary schemes, Eq. ð27Þ, is to model walls by imposing sym-
metry conditions (see also Appendix C). Note that in the case of two symmetry conditions the configuration
resembles a periodic problem. Corresponding to a periodic initial-value problem with symmetric initial val-
ues, stability for the symmetric discretisation is guaranteed by stability of the periodic one (for stability in
case of periodic problems see [3]).

We consider a standing wave which has a pressure amplitude of 10�5 and a wavenumber equal to unity
(pressure, velocity of sound and domain size are scaled to unity). Table 2 shows the maximum L2 error of
pressure within several time intervals 0 < t 6 T for the scheme CUVB-O2 and the discretisation with sym-
metry conditions using 50 and 100 grid points. The error growth with time is approximately linear. Apply-
ing the scheme CUVB-O1 the error growth becomes exponential (not tabulated), indicating nonlinear
2
or of pressure for a standing wave within time interval 0 < t 6 T

2Þ CUVB-O2 CUVB/symmetry

N = 50 N = 100 N = 50 N = 100

4.864050 · 10�10 4.815339 · 10�10 4.863170 · 10�10 4.815313 · 10�10

2.429095 · 10�09 2.404754 · 10�09 2.428683 · 10�09 2.404726 · 10�09

4.856990 · 10�09 4.808785 · 10�09 4.856308 · 10�09 4.808740 · 10�09

4.846567 · 10�08 4.807760 · 10�08 4.848651 · 10�08 4.807761 · 10�08



Table 3
Simulation of an inviscid neutral linear-stability eigensolution in plane Couette flow, clin = 1.143770 for a = 2, M1 = 2 [10]

jcr,DNS � cr,linjRMS �cr;DNS jci,DNS � ci,linjRMS ci,en DNS/2

First time step

u 1.312 · 10�5 1.143768 4.008 · 10�7 �5.024 · 10�7

w 1.488 · 10�5 1.143772 8.635 · 10�5

p 9.098 · 10�5 1.143759 1.309 · 10�5

T 3.372 · 10�4 1.143816 2.752 · 10�5

T = 1000

u 6.301 · 10�7 1.143770 8.896 · 10�7 �6.000 · 10�7

w 7.105 · 10�7 1.143770 6.920 · 10�7

p 2.921 · 10�7 1.143770 1.035 · 10�6

T 4.435 · 10�5 1.143775 5.493 · 10�5
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instability of this linearly stable scheme. This does not necessarily imply instability for a formulation of the
governing equations and discretisation different from Eq. (26)–(28).

As a more complex case, the development of a 2D linear-stability eigensolution of compressible plane
Couette flow is simulated using CUVB-O2. The base flow is parallel between an isothermal moving wall
and an adiabatic wall at rest as investigated in [10]. The Mach number is M1 = 2 and the viscosity of
the base flow is determined according to Sutherland�s law with Su/T1 = 110.4K/220.8K for an isothermal
wall temperature of TW = 1 (lengths are referred to the wall distance, time to the reference length divided by
the velocity of the isothermal wall, pressure to the density times the square of the velocity at this wall and all
other variables to their isothermal wall values). Further parameters are a Prandtl number of Pr = 0.72 and
a ratio of specific heats c = 1.4. In the inviscid limit the mode considered clin = 1.143770 is neutrally stable
for a = 2, see [10]. The eigensolution has been calculated with a shooting method [10] using the Runge–
Kutta scheme as applied for time discretisation and 981 equidistant grid points. For Re = 104 viscous fluxes
are added which are discretised by the PAD6 scheme. While for the inviscid simulation a boundary scheme
is used on the upper and lower wall, for the viscous case the lower wall is modelled by symmetry conditions
(see Appendix C for the modelling of the wall). The viscous eigensolution ðclin = 1.135676�i Æ 8.089441 ·
10�3) has been determined by a single-domain Chebychev collocation method [15] using 256 Chebychev
points.
Table 4
Simulation of a viscous linear-stability eigensolution in plane Couette flow, clin = 1.135676 � i Æ 8.089441 · 10�3 for a = 2, M1 = 2,
Re = 104

jcr,DNS � cr,linjRMS �cr;DNS jci,DNS � ci,linjRMS ci,en DNS/2

First time step

u 1.460402 · 10�2 1.133696 1.081499 · 10�2 �7.937826 · 10�3

w 6.306392 · 10�2 1.141243 6.017972 · 10�2

p 2.323833 · 10�2 1.133223 3.142047 · 10�2

T 2.441014 · 10�2 1.133739 2.493703 · 10�2

T = 1000

u 1.085929 · 10�3 1.134591 7.898664 · 10�3 �7.898694 · 10�3

w 1.081721 · 10�3 1.134595 7.891802 · 10�3

p 1.087211 · 10�3 1.134589 7.895210 · 10�3

T 1.490893 · 10�3 1.134482 7.898104 · 10�3
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In Tables 3 and 4 the computed eigensolutions for a disturbance amplitude of A = 10�5 (based on the
maximum of the streamwise velocity) and a resolution of 50 · 50 grid points are shown. They are deter-
mined for the first time step and for the time interval from t = 0 to t = 1000 without using intermediate
points of the interval. The phase velocity averaged in the wall-normal direction �cr;DNS is computed along
with its RMS error jcr,DNS�cr,linjRMS. Also the RMS error of the scaled growth rate jci,DNS�ci,linjRMS

and the scaled growth rate based on disturbance energy ci,en DNS are given. As seen, the solution always
remained stable and quite accurate.
8. Conclusions

Asymptotic stability of finite-difference discretisations of 2 · 2 systems has been investigated. These sys-
tems correspond to feedback-coupled systems of linear-system theory for which the Nyquist criterion is a
necessary and sufficient criterion for asymptotic stability. Stability for systems results if the scheme is stable
for the scalar case and, according to the Nyquist criterion, if its amplitude response at the outflow grid
point is less than or equal to unity. This requirement covers also the case of multiple domains.

Two new sets of boundary schemes for the fifth-order compact upwind-biased finite-difference scheme
CUVB [2] were constructed, referred to as CUVB-O1 and CUVB-O2. They provide stability for systems
and were optimised with respect to their dispersion properties. The requirement of asymptotic stability
for systems applies to flow cases in which consecutive reflections of sound waves occur, as for a domain
surrounded by solid walls. The linearly stable scheme CUVB-O1 satisfies this requirement even for coarse
resolutions (as low as ten points, whereas scheme CUVB [2] requires at least 200 points) and has a favorable
amplitude response (see Fig. 8ðaÞÞ. Unfortunately it was found to be potentially unstable for nonlinear
problems. However, it is well suited for applications to linear problems such as the linearised Euler equa-
tions. The alternative discretisation CUVB-O2 was found to be stable for grids with at least 50 points. It has
been tested successfully for the full Euler and Navier–Stokes equations and was thereby found to be stable
also in the nonlinear cases investigated. Inviscid and viscous linear-stability eigensolutions of compressible
Couette flow were reproduced in good agreement with predictions of linear stability theory.
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Appendix A. Discretisation matrices

Considering the finite-difference discretisation
~ML
du

dx
¼ 1

Dx
~MRu; ðA:1Þ
the matrices of the discretised initial-boundary-value problem Eq. (2Þ using a strong (i.e.direct, non-approx-
imate) imposition of the inflow boundary condition are given by
mL k;l ¼ ~mL kþ1;lþ1 � ~mL 1;lþ1

~mL 1;1

~mL kþ1;1

; ðA:2aÞ
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mR k;l ¼
1

Dx
~mR kþ1;lþ1 � ~mR 1;lþ1

~mL 1;1

~mL kþ1;1

� �
; ðA:2bÞ

bk ¼
1

Dx
~mR kþ1;1 � ~mR 1;1

~mL 1;1

~mL kþ1;1

� �
: ðA:2cÞ
The matrices for negative advection velocity, Eq. ð8bÞ, are
M�
L ¼ PMLP

M�
R ¼ �PMRP

b� ¼ Pb

with P ¼
0 1

q
1 0

2
64

3
75; ðA:3Þ
the reverse unit matrix.
Note that the spatial operators ~ML and ~MR are asymptotically stable and Lax stable, also for systems, by

satisfying the summation-by-parts condition [7]. To maintain stability if the boundary conditions are im-
posed, the penalty formulation SAT [7] can be used, as done for determining the amplitude response of
the SBP6 scheme, Fig. 1(d). The matrices of the semi-discretisation of Eq. (2Þ are determined with a penalty
parameter s = 2 [7].
Appendix B. Upwind-biased schemes

For the compact upwind-biased finite-difference scheme CUVB [2] the discretisation matrices are
~ML ¼

1 1:344856712172 �1:655143287828 0
�1:384173201496 1 6:620636755258 �2:122934969145

�0:152087544263 0:2375084218594 1 �0:104175088526 0:018754210929673

. .
. . .

. . .
. . .

. . .
.

�0:152087544263 0:2375084218594 1 �0:104175088526 0:018754210929673

15:74839515424 27:04931646417 1 �0:3211206221354

0 4:850969558221 7:826957363797 1

2
6666666666664

3
7777777777775
; ðB:1aÞ

~MR ¼

�2:557476118695 3:982714931742 �0:9827149317416 �0:4425238813046 0 0
3:362325146817 �11:84525146073 8:836922058206 0:2990810938894 �0:6530768381839

0:354175088526 �1:550033687437 1:025050531156 0:1832996458959 �0:012491578140655

. .
. . .

. . .
. . .

. . .
.

0:354175088526 �1:550033687437 1:025050531156 0:1832996458959 �0:012491578140655

�1:846602572079 �30:2283794418 21:15923086495 12:27649588754 �1:36074473861

0 0:0020010162019952 �0:6538343569155 �8:740436045696 5:756444175312 3:635825211098

2
6666666666664

3
7777777777775
:

ðB:1bÞ
They provide an order of accuracy of five at the interior points and at the points adjacent to the boundary
points, and an order of four at the boundary points.

The boundary schemes of CUVB were optimised with respect to reflection and transmission of waves,
as explained in Section 6, using Eq. ð24Þ as cost function and the constraints Eqs. (22), (23) and (25),
with ~mL 1;2; ~mL 1;3; ~mL 2;3; ~mL 2;4; ~mL N�1;N�2; ~mL N�1;N�3; ~mL N ;N�1 and ~mL N ;N�2 being the variables for the
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optimisation within a range of [�100, 100]. For N = 50 and suitable initial guesses we obtain the following
scheme CUVB-O1,
~ML ¼

1 �1:96378909730 �5:38218806239 0
�0:922162677719 1 6:72212514508 �0:207233947492

�0:152087544263 0:2375084218594 1 �0:104175088526 0:018754210929673

. .
. . .

. . .
. . .

. . .
.

�0:152087544263 0:2375084218594 1 �0:104175088526 0:018754210929673

�28:7262198889 73:3089889001 1 �19:1497197889

0 �13:7434120690 80:3037792329 1

2
6666666666664

3
7777777777775
; ðB:2aÞ

~MR ¼

�2:04090173087 9:22461628934 �5:94568364596 �1:27289749294 0:0348665804236 0
2:24861883630 �9:10701778134 4:57733895440 2:57917157018 �0:298111579533

0:354175088526 �1:550033687437 1:025050531156 0:1832996458959 �0:012491578140655

. .
. . .

. . .
. . .

. . .
.

0:354175088526 �1:550033687437 1:025050531156 0:1832996458959 �0:012491578140655

8:41987410001 1:09881702593 �102:038489200 140:667981700 �48:1481836260

0 �7:58726594183 47:9808309958 �117:4556688493 53:7575413147 23:3045624806

2
6666666666664

3
7777777777775
:

ðB:2bÞ
An alternative optimisation with the constraint Eq. ð25Þ replaced by maxXðg1ðiXÞÞ = 1.26 results in the
scheme CUVB-O2,
~ML ¼

1 14:8137755383 0:172558101067 0
�1:08391180127 1 6:76200737753 �0:827642286727

�0:152087544263 0:2375084218594 1 �0:104175088526 0:018754210929673

. .
. . .

. . .
. . .

. . .
.

�0:152087544263 0:2375084218594 1 �0:104175088526 0:018754210929673

3:85733435009 7:30522519306 1 �0:00320394465427

0 �9:33790001714 81:6392242488 1

2
6666666666664

3
7777777777775
; ðB:3aÞ

~MR ¼

�5:77239737614 �8:45985168260 19:2206633074 �5:95851570175 0:970101453100 0
2:64062039134 �10:0908066001 5:99319883390 1:87308727772 �0:416099902825

0:354175088526 �1:550033687437 1:025050531156 0:1832996458959 �0:012491578140655

. .
. . .

. . .
. . .

. . .
.

0:354175088526 �1:550033687437 1:025050531156 0:1832996458959 �0:012491578140655

�0:439699140931 �7:58032349424 4:27638969117 3:78763206561 �0:0439991216105

0 �7:33142702216 45:7115454692 �119:458836373 57:8074201959 23:2712977303

2
6666666666664

3
7777777777775
:

ðB:3bÞ
Appendix C. Adiabatic wall

In this contribution, isothermal walls are taken into account by strong imposition of the velocities and
temperatures on the boundary grid points. Adiabatic walls are modelled by symmetry of the density and
energy and antisymmetry of the velocities with respect to the wall. By this means the boundary conditions
of zero velocity (wall at rest) and zero heat flux are satisfied. The resulting zero pressure gradient normal to
the wall $p Æ n = 0, is an acceptable approximation for high Reynolds number flow. For explicit schemes,
this corresponds to the use of ghost points outside the domain for which the values are set according to this
conditions. In our case the symmetry and antisymmetry conditions are implicitly imposed by the discreti-
sation using the coefficients of the interior scheme only,
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l1 :¼ ~mL n;n�2; l2 :¼ ~mL n;n�1; l3 :¼ ~mL n;n; l4 :¼ ~mL n;nþ1; l5 :¼ ~mL n;nþ1;

r1 :¼ ~mR n;n�2; r2 :¼ ~mR n;n�1; r3 :¼ ~mR n;n; r4 :¼ ~mR n;nþ1; r5 :¼ ~mR n;nþ1:
ðC:1Þ
For upwind-biased schemes, there is a coupled discretisation for positive and negative advection velocity.
Modelling adiabatic walls on opposed boundaries of the domain, the symmetric (upper signs) and antisym-
metric (lower signs) case is discretised by
~MLS
d

d�

� �
¼ ~MRSu ðC:2Þ
with
~MLS ¼

l3 l4 l5 0 0 0 �l2 �l1 0
l2 l3 l4 l5 0 0 �l1
l1 l2 l3 l4 l5 0 0

. .
. . .

. . .
. . .

. . .
. ..

. ..
.

l1 l2 l3 l4 l5 0 0

l1 l2 l3 l4 0 0 �l5
0 l1 l2 l3 0 0 �l5 �l4
�1 0 . . . . . . 0 0 1 0 . . . . . . 0 0

0 0 . . . . . . 0 1 0 0 . . . . . . 0 �1

�l4 �l5 0 0 l3 l2 l1 0
�l5 0 0 l4 l3 l3 l1

0 0 l5 l4 l3 l2 l1

..

. ..
. . .

. . .
. . .

. . .
. . .

.

0 0 l5 l4 l3 l2 l1
�l1 0 0 l5 l4 l3 l2

0 �l1 �l2 0 0 0 l5 l4 l3

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775

; ðC:3aÞ

~MRS ¼

r3 r4 � r2 r5 � r1 0
r2 r3 � r1 r4 r5
r1 r2 r3 r4 r5

. .
. . .

. . .
. . .

. . .
.

r1 r2 r3 r4 r5
0 r1 r2 r3 � r5 r4
0 . . . . . . 0

0 . . . . . . 0

�r4 �ðr3 � r5Þ �r2 �r1 0
�r5 �r4 �r3 �r2 �r1

. .
. . .

. . .
. . .

. . .
.

�r5 �r4 �r3 �r2 �r1
�r5 �r4 �ðr3 � r1Þ �r2

0 �ðr5 � r1Þ �ðr4 � r2Þ �r3

2
66666666666666666666666666666664

3
77777777777777777777777777777775

: ðC:3bÞ
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